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Adversarial Learning for Multi-Task Sequence
Labeling With Attention Mechanism

Yu Wang, Yun Li, Ziye Zhu, Hanghang Tong, and Yue Huang

Abstract—With the requirements of natural language applica-
tions, multi-task sequence labeling methods have some immediate
benefits over the single-task sequence labeling methods. Recently,
many state-of-the-art multi-task sequence labeling methods were
proposed, while still many issues to be resolved including (C1)
exploring a more general relationship between tasks, (C2) ex-
tracting the task-shared knowledge purely and (C3) merging the
task-shared knowledge for each task appropriately. To address
the above challenges, we propose MTAA, a symmetric multi-task
sequence labeling model, which performs an arbitrary number of
tasks simultaneously. Furthermore, MTAA extracts the shared
knowledge among tasks by adversarial learning and integrates
the proposed multi-representation fusion attention mechanism
for merging feature representations. We evaluate MTAA on two
widely used data sets: CoNLL2003 and OntoNotes5.0. Experi-
mental results show that our proposed model outperforms the
latest methods on the named entity recognition and the syntactic
chunking task by a large margin, and achieves state-of-the-art
results on the part-of-speech tagging task.

Index Terms—sequence labeling, multi-task learning, adver-
sarial learning, attention mechanism.

I. INTRODUCTION

SEQUENCE Labeling, which aims to label each element of
the input sequence with the task label set, is a fundamental

task in Natural Language Processing (NLP) [1]. Generally, the
sequence labeling methods first encode the text through neural
networks [2], and then obtain the label sequence by Condi-
tional Random Fields (CRF) [3] or Softmax decoding [4].
Under these high-level thoughts, single-task sequence labeling
with feature embedding and multi-task sequence labeling
with knowledge transfer have been the two major encoding
objectives [5], [6].

The single-task sequence labeling methods merely treat one
task in one training process with the task-specific data set [2],
[7]. Normally, the text encoding methods contain various
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neural networks, including the Convolutional Neural Networks
(CNN) [8], Bidirectional Long Short-Term Memory (BiL-
STMs) [9] and Transformer [10]. For example, the BiLSTMs-
CRF model proposed by Huang et al [11] is capable of
completing the Part-of-Speech (POS) tagging, Named Entity
Recognition (NER) and Chunking tasks separately. In order
to boost the model performance, such methods further utilize
additional feature embeddings, and then concatenate them with
the original input. For example, Ghaddar and Langlais [12]
proposed a variant of the BiLSTMs-CRF model by adding
lexical similarity representation, which encodes the similarity
of a word to each entity type. Feng et al. [13] combined four
additional feature embeddings to cope with the problem of
insufficient training data and recognized named entities in low-
resource languages. However, these methods cannot guarantee
the effectiveness of various additional feature embeddings,
because these embeddings bring both the knowledge and noise
into the training model. In addition, a single-task sequence
labeling model is independently trained for one task at a
time, resulting in a significant increase in total training cost
for modeling multiple tasks. Unfortunately, downstream NLP
tasks, such as knowledge graph construction and question
answering system, often require multiple label information
in practice. This leads to a gap between the single-task
sequence labeling methods and the real-world natural language
applications.

In contrast, the multi-task sequence labeling methods learn
multiple tasks jointly. As an immediate benefit, this closes
the aforementioned gap between real-world applications and
single-task sequence labeling methods. Recently, many state-
of-the-art multi-task sequence labeling methods have been pre-
sented [14], [15], which eliminate the dependency on manually
added feature embeddings [16] thanks to transferring shared
knowledge among tasks. Some of these methods utilized the
source (simple) task to improve the performance of target
(challenging) task [17]. For example, Lin et al. [18] exploited
the features from high-resource language tagging tasks to
improve the low-resource language tagging tasks. However,
the dependency on high-quality source tasks and unequal
relationship between tasks may limit the generality and ap-
plicability of such models. Furthermore, multiple studies [19],
[20] have shown that knowledge transfer provides valuable
information, but also brings task-specific information (i.e.,
noise) into the model. In order to filter out noise, several
methods [21], [22] employ the adversarial training strategy to
learn shared knowledge among tasks. Cao et al. [19] proposed
an adversarial transfer learning model for processing NER
and Chinese Word Segmentation (CWS) tasks simultaneously.
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In this case, the feature (i.e., knowledge) of word boundary
information is partly shared in both tasks. They used a task
discriminator to ensure that the shared information extracted
from CWS is not mixed with task-specific noise. However,
the task discriminator in their model might fail to extract
the shared knowledge (referred to as ‘discriminator collapse’
in this paper) due to the fact that the inputs of the model
come from the same language and similar domains (more
detail in Section II-B). In addition, current advanced multi-
task methods generate multiple feature representations [23],
while lacking exploration for appropriately merging these
representations. Simply concatenating multiple representations
ignores the priority of the representations, which is not suitable
for an increasing number of representations.

Based on the above observations, the multi-task sequence la-
beling method is more suitable for real-world natural language
applications [24]. However, it still remains three key chal-
lenges have yet to be fully addressed, including (C1) exploring
a more general relationship between tasks in end-to-end multi-
task methods, (C2) purely extracting task-shared knowledge
and (C3) appropriately merging the shared knowledge for each
task.

In this paper, we present a multi-task sequence labeling
model named MTAA that can effectively address the three
challenges mentioned above. We treat the relationship between
tasks to be equal to each other. Accordingly, the proposed
model is designed as a symmetrical structure to perform an
arbitrary number of tasks simultaneously. To purely extract
shared knowledge, a variant of the adversarial training strategy
is proposed, which effectively alleviates the task discriminator
collapse problem. Different from the previous work [19],
the goal of the task discriminator in MTAA is to estimate
which task-individual encoder the input comes from. To ap-
propriately merge the multiple representations, we present the
multi-representation fusion attention mechanism. Specifically,
for each sentence, we first encode it into a task-individual
representation for each task. Then, the adversarial training
modules extract the shared representations among multiple
tasks. Furthermore, the multi-representation fusion attention
mechanism merges the individual and shared representations
with respect to each task. Finally, the task-individual CRFs are
employed to decode the label of each sequence labeling task.

The main contributions of our work are as follows,
• The MTAA can perform an arbitrary number of sequence

labeling tasks simultaneously, thereby meeting the vari-
ous needs of different downstream NLP tasks.

• The MTAA extracts shared knowledge among tasks by
adversarial learning, while effectively alleviating the task
discriminator collapse problem.

• The multi-representation fusion attention mechanism in
MTAA model merges the multiple feature representations
appropriately.

We evaluate the MTAA model on two public data sets:
CoNLL2003 and OntoNotes5.0. Under sets of fair comparison
experiments, MTAA outperforms the advanced methods on
the NER and Chunking tasks, by a large margin, and achieves
state-of-the-art results on the POS tagging task. Especially,
MTAA performs more effectively on OntoNotes5.0, which

proves that the MTAA has more advantages in dealing with
complicated data sets.

II. PROBLEM STATEMENT

In this section, we first define the multi-task sequence
labeling problem. Then we analyze the challenges in this task
and give some solutions.

A. Problem Definition

Formally, given one or several sentences, the multi-task
sequence labeling method learns to generate corresponding
label sequences for a group of tasks [18]. We denote T as
a set of sequence labeling tasks, and X = {x1, x2, ..., xK} as
a set of sentences, where K is the number of the sentences in
the corpus. For task t ∈ T , Y t = {yt1, yt2, ..., ytK} represents
a set of corresponding label sequences. Based on the above
notations, we define the multi-task sequence labeling problem
as follow,

Problem: Multi-task Sequence Labeling
Given: (1) a set of sentences X , where each sentence xi ∈ X

contains Ni words. (2) |T | sets of label sequences
Y T , where each set Y t ∈ Y T represents the label
information of task t corresponding to the set X .
(3) a new sentence xnew 6∈ X which contains Nnew
words;

Find: the label sequences yTnew for the new sentence xnew
on all tasks T .

Noted that we take the sentence and the corresponding task
label sequences as inputs. The goal is to generate the label
sequences for a new sentence on all these tasks.

B. Challenges and Ideas

Before we present the details of our MTAA, we first
illustrate the three challenges in this task and attach our ideas
for each one.

C1: The relationship between sequence labeling tasks. In
existing multi-task sequence labeling models, the relationships
between tasks are mainly source-target relationship [18], lin-
guistic hierarchy relationship [25], and equal relationship [26].
To be specific, the source-target relationship-based meth-
ods achieve significant improvements on the target task by
transferring knowledge from source task to target task. The
linguistic hierarchy relationship-based methods treat different
tasks at different layers where higher layers utilize shared
knowledge provided by the lower-level tasks. In contrast, equal
relationship-based methods can transfer knowledge in both
directions.

Although the methods based on the source-target or linguis-
tic hierarchy relationship perform well in some cases [27],
multiple tasks cannot simultaneously make full use of shared
knowledge between each other due to the one-way transfer.
In addition, the source-target relationship-based methods are
based on the hypothesis that the knowledge learned in a related
source task can be reused in the target task. Therefore, such
methods normally require a high-quality source task to ensure
good performance on the target task. Another major limitation
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of the linguistic hierarchy relationship-based methods is that
we have to subjectively determine the order of tasks. However,
it is noted that the order may affect the performance of all
tasks.

Idea for C1: Modeling each task equally by the sym-
metric structure. Several works [26], [28] have reported the
shared knowledge between a pair of sequence labeling tasks.
Taking the NER, POS tagging and Chunking tasks as an
example, the shared knowledge is as follows,
• NER and POS tagging: According to statistics, the entity

words recognized in the NER task are generally either
nouns or including nouns. Similarly, the noun words
recognized in the POS tagging task can be entity words
or entity references or entity heads. Obviously, the two
tasks are closely related.

• POS tagging and Chunking: For simplicity, the POS
tagging task aims to recognize nouns, verbs, adjectives,
etc.; the Chunking task aims to recognize noun phrases,
verb phrases, etc. It can be seen that the targets of the
two tasks are consistent in some respects.

• NER and Chunking: The noun phrases identified in
the Chunking task can be considered as coarse-grained
entities. Thus, the boundary information extracted in the
two tasks is similar, which can effectively enhance the
overall performance of both tasks.

Based on these observations, we treat the relationship between
tasks to be equal to each other. Accordingly, we design the
model to be a symmetric structure that can share knowledge
in both directions. This allows the proposed model can perform
an arbitrary number of the tasks simultaneously.

C2: Extracting the task-shared knowledge purely. In
multi-task learning, models learn various tasks jointly and
benefit all of them by transferring knowledge. The knowledge
that should be transferred is shared information among tasks,
for the reason that the remaining task-specific information
might negatively affect the performance of the model [29]. Re-
cently, some multi-task methods [19], [29] adopt an adversarial
training strategy (which normally consists of a generator and a
discriminator) to purely extract the task-shared knowledge. To
be specific, the generator (i.e., task-shared encoder) attempts
to extract features shared between a pair of tasks. And the
discriminator (i.e., task discriminator) aims to determine which
task the extracted features comes from. We consider that the
features extracted by task-shared encoder can represent shared
knowledge if the task discriminator fails. For example, Cao
et al. (2018) [19] proposed an adversarial transfer learning
model to process both NER and CWS tasks simultaneously.
In specific, they used a task discriminator to ensure that the
shared information extracted from CWS without task-specific
noise. However, it is difficult for the task discriminator to
perform well due to the fact that both inputs of the model
belong to the same language and similar domains. This makes
the task-shared encoder easy to mislead the task discriminator
even if it is not working. As a result, the shared encoder might
fail to extract the shared knowledge. This form of failure is
called ‘discriminator collapse’ in this paper.

Idea for C2: A variant of the adversarial training
strategy. To purely extract the shared knowledge and allevi-

ate discriminator collapse problem, we adjust the adversarial
training strategy in our model. Rather than distinguishing
which task corpus the input comes from, we first use the
task-individual encoder to encode the input sentence and then
distinguish which task-individual encoder the input comes
from. The reason for this adjustment is that the task-individual
encoder contains more task-related knowledge since it is one
of the closest feature extractors to the task decoder (i.e., task-
individual CRF). In this way, the task discriminator can suc-
cessfully alleviate the discriminator collapse problem, thereby
ensuring that the task-shared encoder can effectively extract
shared knowledge.

C3: Merging the shared knowledge appropriately. The
multi-task methods normally extract multiple feature repre-
sentations for each task including the individual and shared
representations [23]. Most of the existing methods simply
concatenate these representations or find the mean of all fea-
ture representations. As a result, the priority of representations
was relatively ignored until recently. Nowadays, appropriately
merging multiple representations is becoming increasingly
significant for multi-task models.

Idea for C3: Multi-representation fusion attention mech-
anism. For appropriately merging the shared knowledge, we
present a multi-representation fusion attention mechanism,
which is a variant of attention mechanism. The traditional
attention mechanism [30] consists of a query and a set of
key-value pairs, where the query, keys, and values are all
vectors. Among them, the query vector is a core component
in attention function. In this paper, we use the task-individual
representation as to the query in each attention function. The
set of key-value pairs is the combination of the individual and
shared representations. In this manner, we can integrate the
shared knowledge from other tasks with respect to each task.

Combining the symmetric model structure, shared knowl-
edge extraction and fusion methods, our proposed MTAA
finally performs equal, pure, and efficient knowledge transfer
among tasks, and achieves state-of-the-art performance of
multi-task sequence labeling.

III. MODEL

In this section, we present our multi-task sequence label-
ing model MTAA, whose overall architecture is depicted
in Figure 1. The MTAA contains four main components
including task-individual encoder, adversarial training, multi-
representation fusion attention mechanism, and task label
decoder. For each given sentence, the MTAA first learns
the individual representation for each task by the task-
individual encoders. Then, the adversarial training modules
extract the shared knowledge among tasks, while eliminating
the task-specific noise. Subsequently, the multi-representation
fusion attention mechanism merges the obtained individual
and shared representations with respect to each task. Finally,
the task-individual CRF is employed to decode the label of
each sequence labeling task. In the following subsections,
we describe the main components of our model in detail.
To clearly explain the proposed model, we take the most
important sequence labeling tasks (i.e., NER, POS tagging, and
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Fig. 1. An overview of our model MTAA. The dotted frame is the adversarial training module. The PC adversarial module on both sides refers to the same.

Chunking tasks) as an example (i.e., T = {n, p, c}, where n
denotes NER, p denotes POS tagging, and c denotes Chunking
task).

A. Task-individual Encoder

Given a sentence x = {w1, w2, ..., wN}, N is the length
of the sentence, the task-individual encoder firstly learns the
individual features of each task. Specifically, we employ an
embedding layer and an encoding layer to encode the sentence
into a task-individual representation for each task.

1) Embedding Layer. The embedding layer maps all
input words in the sentence into a corresponding embedding
sequence. The embedding layer consists of a full pre-trained
BERT [10] model and a dense layer. BERT is one of the latest
embedding methods, which represents Bidirectional Encoder
Representations from Transformers. There are 768 dimensions
for each word embedding vector in BERT. In terms of the
complexity of the model, we reduced the 768-dimensional
embedding to k-dimensional through a simple dense layer.
Therefore, as shown in Figure 1, for a given sentence x, the
embedding layer converts the sentence x into an individual
representation xt = {wt

1, wt
2, ..., wt

N} for task t, where wt

is a k-dimensional word vector.
2) Encoding Layer. After embedding the given sentence

as a k-dimensional sequence xt for task t, we use an en-
coding layer to learn the task-individual representation for
each task. We use the same neural model structure to extract
features since all target tasks belong to the sequence labeling.
LSTM [31], a particular RNN, is generally adopted to learn the
long-term dependencies in many NLP applications. BiLSTMs
are able to extract semantic features that reflect the sequential
nature of the text. In our model, we built the task-individual
encoders with the same BiLSTMs structure but no shared
parameters for each task. For simplicity, we denote such a

sentence encoding operation as the following equations,

−→
h t
i = LSTMf (wt

i ,
−→
h t
i−1, θ

t
f ), (1)

←−
h t
i = LSTMb(w

t
i ,
←−
h t
i+1, θ

t
b), (2)

hti =
−→
h t
i ⊕
←−
h t
i, (3)

where t ∈ T , the θtf and θtb denote the parameters of the
forward and backward LSTM related to task t, respectively.
The
−→
h t
i and

←−
h t
i are the kh-dimensional hidden states at the

position i of the forward and backward LSTM, respectively.
⊕ denotes concatenation operation. And then we use the ht =
{ht1,ht2, ...,htN} to denote the individual representation of task
t. Through the embedding layer and the BiLSTMs encoding
layer, we obtain a task-individual representation for each task.

B. Adversarial Training

In addition to individual representations, we also utilize the
adversarial training strategy to purely extract the knowledge
shared between a pair of tasks. The adversarial training module
normally consists of a generator and a discriminator. The target
of the discriminator (i.e., task discriminator) is to determine
whether the features extracted by the generator (i.e., task-
shared encoder) are shared among tasks.

1) Task-shared Encoder. As we obtain the task-individual
representations (i.e., hT = {hn, hp, hc} in this example) from
the task-individual encoders, a task-shared encoder is used to
learn the shared representation between a pair of individual
representations. Similar to the task-individual encoder, we
also utilize the BiLSTMs structure as the task-shared encoder.
Different from previous works [19] use representations from
embedding layers as the inputs, the benefit of using repre-
sentations from task-individual encoders is to alleviate the
discriminator collapse problem. For simplicity, we denote the
BiLSTMs as S, and the task-shared feature extraction follows
the equation,
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stα = S(ht, θαs ), t ∈ α (4)

where θαs denotes the parameters of the task-shared encoder
set for the pair of tasks α (where α ∈ {{n, p}, {n, c}, {p, c}}
in this example), and stα denotes shared representation for task
t extracted by the shared encoder with parameters θαs . Taking
the encoder shared by NER and POS as an example, we use
the sn{n,p} to represent NER shared representation and sp{n,p}
to represent POS shared representation. It should be mentioned
that a shared encoder alternately receives the input from two
related tasks (i.e., one task-individual representation at each
time).

2) Task Discriminator. In our model, task discriminators
also share the same neural network structure but do not
share parameters. The task discriminator uses the task-shared
representation to estimate which task-individual encoder the
input comes from. Specifically, we adopt a two-layer mul-
tilayer perceptron networks (MLP) as the task discriminator
to achieve the probability distributions over each sequence.
Formally, the equations can be expressed as follow,

D(stα, θ
α
d ) = softmax(MLP(stα)), (5)

where the α denotes a pair of tasks (where α ∈
{{n, p}, {n, c}, {p, c}} in this example). For simplicity, θαd
denotes the parameters of each task discriminator. Contrary to
the task discriminator, the task-shared encoder is expected to
generate the representation that can mislead the task discrimi-
nator. Therefore, the adversarial training process is a min-max
game and can be formalized as follow,

Ladv =
∑
α

min
θαs

(max
θαd

α∑
t

K∑
k

logD(S(ht(k)))), (6)

where the θαs and θαd denote the trainable parameters of task-
shared encoder and task discriminator for task pair α. The
K is the number of training examples and ht(k) is the k-th
example of task t.

It should be noted that the task-shared encoder (i.e., gen-
erator) can extract the knowledge between a pair of tasks.
And the task discriminator is used to eliminate the task-
specific noise. After sufficient training, the task-shared encoder
and the task discriminator reach a balance. Thereby, the
representation generated by task-shared encoder represents the
shared features between a pair of tasks in which task-specific
noise has been filtered.

C. Multi-Representation Fusion Attention Mechanism

At this position, we have obtained an individual represen-
tation and multiple shared representations for each task. We
propose the multi-representation fusion attention mechanism
to appropriately merge these representations. The proposed
multi-representation fusion attention mechanism consists of a
query and a set of key-value pairs, where the query, keys and
values are all vectors. The query vector is the core component
in the attention function [30]. In our MTAA model, the task-
individual representation of each task is the most basic of these
representations. Hence, we use individual representation as the

query in the attention function. For task t, the set of key-
value et is the combination of the individual representation
ht and shared representations st. For example, the key-value
set of NER task should be en = {hn, sn{n,p}, s

n
{n,c}} (pair of

task {p, c} is not related to NER task). The attention score is
defined as follow,

βti =
exp(ht, eti)∑

etj∈et
exp(ht, etj)

, eti ∈ et. (7)

The attention scores are referred to estimate how well those
representations related to the task-individual representation. It
can be used to compute the fusion representation ēt as

ēt =
∑
eti∈et

βtie
t
i. (8)

It should be mentioned that part of the features among
all representations is overlapping. For instance, the word
boundary feature is not only an individual feature but also
a shared feature. Moreover, The three representations might
all contain the word boundary feature. The repetitive features
cannot improve the performance of our model, and make the
attention mechanism invalid. Therefore, we adopt orthogonal-
ity constraints [32] to address the overlapping issue before
the attention mechanism. We minimize the penalty function
as follow,

Lo =
T∑
t

‖
∑
α

(It)TStα‖F , (9)

where the It is the matrix whose row vectors are the individual
representation task t, the Stα is the matrix whose row vectors
are the related shared representations of task t (in this example,
α ∈ {{n, p}, {n, c}} is related to NER task, and pair {p, c}
is not related to NER task). And the ‖ · ‖F is the squared
Frobenius norm [33].

Noted that, we eventually construct the fusion representation
ēt for each sequence labeling task. These fusion representa-
tions will be the input to the task label decoder.

D. Task Label Decoder
Finally, we employ a task-individual CRF to decode the

representation for each sequence labeling task. For task t, the
CRF use the ēt to predict the task label sequence. The scoring
equation defined by CRF is calculated as follow,

scoret(x, yt) =
N∑
i=1

(logψtEMIT (yti → wi)

+ logψtTRANS(yti−1 → yti)),

(10)

where the ψtEMIT (yti → wi) comes from the ēti at timestep
i. It represents the emission potential from the word wi to
the tag yti . The ψtTRANS ∈ RM is the transition matrix,
which comes from CRF, and M is the tag size. Moreover,
ψtTRANS(yti−1 → yti) controls the transition probability from
yti−1 to yti . Therefore, we can optimize the sequence label
tasks with the following equation,

Lt = − log(p(yt|x))

= − log(
exp(scoret(x, yt))∑

y′t∈Y tx
exp(scoret(x, y′t))

), t ∈ T. (11)
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Algorithm 1: Training process of the MTAA model

1 Input: Training data (χ = {X , Y T }), where Y T is the
ground truth label sequences; learning rate(η).

2 Initialization: Initialize parameters (θn, θp, θc, θnps ,
θncs , θpcs , θnpd , θncd , θpcd , An, Ap, Ac, Mn, Mp, Mc).

3 Output: (θ−, At, Mt).
1: for each (x, yT ) ∈ χ do
2: generate three individual representations {hn, hp,

hc} for x;
3: generate two shared representations {sn{n,p}, s

n
{n,c}}

and predict their task label for hn;
4: generate two shared representations {sp{n,p}, s

p
{p,c}}

and predict their task label for hp;
5: generate two shared representations {sc{n,c}, s

c
{p,c}}

and predict their task label for hc;
6: transform all representations into the ēn, ēp and ēc;
7: compute the label sequences yn, yp and yc;
8: update parameters (θn, θp, θc, θnps , θncs , θpcs , θnpd ,

θncd , θpcd , An, Ap, Ac, Mn, Mp, Mc);
9: end for

10: return (θ−, At, Mt)

E. Training

The final objective function of our proposed model is
defined as follow,

L =

T∑
t

Lt + λ1Ladv + λ2Lo, (12)

where T denotes a set of sequence labeling tasks (i.e., NER,
POS tagging and Chunking tasks in this example), λ1 and
λ2 are the hyper-parameters. In this case, we use λ1 to
increase the proportion of the adversarial training loss in
the total loss, because the CRFs’ loss is much larger than
the adversarial training loss in our experiments. We choose
the Adaptive Moment Estimation (Adam) [34] method to
optimize the MTAA. It should be noted that, regardless of
the model structure or training strategy, the MTAA will treat
each sequence labeling task equally.

The full optimization procedure for the MTAA is shown in
Algorithm 1, where θ−, At and Mt denote the parameters of
neural networks, attention matrices, and CRFs, respectively.

IV. EXPERIMENTS

In this section, we first introduce the data sets used for eval-
uation and then present the experimental setup and baseline
methods. Finally, we present the main experimental results and
some detailed analysis of our MTAA model.

A. Data Sets

To evaluate the performance of our proposed MTAA model,
we perform experiments on two widely used data sets, includ-
ing CoNLL2003 [35] and OntoNotes5.0 [36]. Table I shows
the size of sentences, tokens, and labels for training, validation,
and test sets for each data set.

The CoNLL2003 is a classic data set in the NLP field, which
has a training file, a valid file, and a test file. In our experi-
ments, we only use the English data of CoNLL2003. It was
taken from the Reuters Corpus which includes 1,393 English
Reuters news reports between August 1996 and August 1997.
For all data, a tokenizer, a POS tagger, a chunker and named
entity tag were applied to the raw data. The English data was
tagged and chunked by the memory-based MBT tagger [37].
It contains ten types of chunking and over thirty types POS
tags. Named entity tagging was done with four entity types
by hand at the University of Antwerp.

With the development of natural language applications,
there is an urgent need for richer semantic representations.
To address this challenge, the OntoNotes5.0 was provided by
the OntoNotes project [38], which is a corpus of large-scale,
accurate, and integrated annotation of multiple levels of the
shallow semantic structure in text. According to the type of
linguistic annotation that represents, OntoNotes5.0 is divided
into six logical blocks: (i) Treebank, (ii) PropBank, (iii)
Word Sense, (iv) Names, (v) Coreference and (vi) Ontology.
The data set comprises various genres (newswire, magazine
articles, broadcast news, broadcast conversations, web data,
and conversational speech) in three languages (English, Chi-
nese, and Arabic). Specifically, it includes roughly 1.5 million
words of English, 800K of Chinese, and 300K of Arabic.
In our experiments, we focus on the English and Chinese
data of OntoNotes5.0. Besides, according to the tag format of
CoNLL2003, we process the tags of OntoNotes5.0 and obtain
the POS, chunking and named entity tags for all English and
Chinese data of OntoNotes5.0.

B. Experimental Setup

In our experiments, we use 128-dimensional word embed-
dings. The word embeddings are obtained by the full pre-
trained BERT followed by a dense layer. All trainable param-
eters in our model are initialized by the method described
by Glorot and Bengio [39]. We train our model by the Adam
optimizer [34] with gradient clipping of 5 [40], and implement
it under PyTorch 1.

In addition, we assign the hyper-parameters, which are
reported in Table II, using the default values based on the
experience. We construct each individual encoder and shared
encoder by two BiLSTMs layers with 256 units for considering
the trade-off between implementation complexity and model
performance. The initial learning rate α is set to 0.008 and
decreases as the training steps increase. The batch size is set to
64 at the sentence level. To avoid model over-fitting problem,
we apply Dropout [41] to the output of LSTM layer at a rate of
0.5. We monitor the training process on the validation set and
report the final result on the test set. All of our experiments
are performed on NVIDIA 1080ti GPU and Intel i7-8700K
CPU. The training time of MTAA on the CoNLL2003 data
set is 50 minutes each epoch, and the decoding (i.e., testing)
time is 4 minutes. From the performance on the validation set,
our model reached the best performance after 20 epochs.

1https://pytorch.org/
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TABLE I
THE STATISTICS OF THE DATA SETS.

Training Validation Test
sentence # token # sentence # token # sentence # token #

CoNLL2003 14,987 204,567 3,644 51,578 3,486 46,666
OntoNotes5.0 (English) 81,828 1,088,503 11,066 157,724 11,257 172,728
OntoNotes5.0 (Chinese) 37,746 751,902 5,586 111,756 4,472 92,142

TABLE II
HYPER-PARAMETERS USED FOR TRAINING THE MTAA MODEL.

Layers Hyper-parameters
BERT dimension 768

Dense hidden size 128

Individual Encoder hidden size & layer 256 & 2

Shared Encoder hidden size & layer 256 & 2

Discriminator hidden size & layer 256 & 2

Attention layer hidden size 256

Dropout rate 0.5

λ1 rate 5

λ2 rate 0.02

C. Baseline Methods

As our model can accomplish multiple sequence labeling
tasks in one training process, we compare it with the latest
models of NER, POS tagging, and Chunking tasks on both
data sets. We first introduce the following single-task sequence
labeling methods, which can only accomplish on specific tasks:
• LSTM-CRF [2]: a well-known neural model for NER

task, which uses the BiLSTMs with a sequential CRF
layer above it.

• LSTM-CNNs-CRF [5]: an end-to-end sequence labeling
system combining the BiLSTMs, CNN and CRF, without
the need for feature engineering or data pre-processing.

• NCRF++: [42]: a mature PyTorch-based toolkit for gen-
eral sequence labeling tasks. It uses CNN and BiLSTMs
to learn both character and word sequence representations
for sequence labeling.

• TagLM [43]: a language-model-augmented sequence tag-
ger, which utilizes additional pre-trained context embed-
dings from bidirectional language models.

• CSE [44]: a novel type of word embedding, short for
Contextual String Embeddings, which is produced by a
trained character language model.

• ELMo [45]: a type of deep contextualized word repre-
sentation, short for Embeddings from Language Model,
which provides multi-sense information for downstream
NLP tasks in addition to word syntax and semantics.

• BERT [10]: a new language representation model, short
for Bidirectional Encoder Representations from Trans-
formers, which extends transfer learning with language

models from deep unidirectional architectures to deep
bidirectional architectures.

• Joint-Yang [46]: a sequence labeling method, which
utilizes the discrete manual feature to complement the
features automatically induced from neural networks.

• Lattice LSTM [47]: a lattice-structured LSTM model for
Chinese NER, which explicitly leverages word and word
sequence information to avoid segmentation errors.

To further explore the effectiveness of MTAA as a multi-
task model, we compare it with the following state-of-the-art
multi-task sequence labeling methods:

• Transfer model [16]: a neural sequence taggers method
based on transfer learning, which can be used for tasks
without insufficient training data.

• JMT [25]: a joint many-task model, which leverages
linguistic levels of morphology, syntax and semantics to
solve increasingly complex tasks.

• CVT [48]: a self-training algorithm suitable for neural
sequence model, short for Cross-View Training, which
leverages both labeled and unlabeled data to improve the
representations of sentence encoder.

• SC-LSTM [28]: a new LSTM cell, short for Shared-Cell
LSTM, which can simultaneously learn task-shared and
specific information.

D. Main Results

The main experimental results of our proposed MTAA in
NER, Chunking and POS tagging tasks on the CoNLL2003,
OntoNotes5.0 (English) and OntoNotes5.0 (Chinese) are illus-
trated in Table III, Table IV and Table V, respectively. Since
the embedding methods used by these compared multi-task
sequence labeling methods are varied, we also provide the
experimental results of MTAA with corresponding embedding
methods for a fair comparison. It should be mentioned that
most of these methods (e.g., ELMo [45] and CSE [44]) cannot
be re-implemented in Chinese since the Chinese characters
are different from characters in English or pre-trained model
does not support Chinese. Therefore, we only provide com-
parison results on CoNLL2003 and OntoNotes5.0 (English)
data sets, shown in Table III and Table IV. In order to further
demonstrate the effectiveness of our proposed MTAA in other
languages, we compare our model with several state-of-the-art
methods on OntoNotes5.0 (Chinese), and the corresponding
experimental results are listed in Table V. Since there are few
methods for Chinese Chunking and POS tagging tasks, we
only report results on the NER task in this set of experiments.
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TABLE III
COMPARISON OF THE LATEST METHODS FOR NER, CHUNKING, AND POS

TAGGING TASKS IN F1 SCORE ON CONLL2003. * DENOTES RANDOMLY
INITIALIZED EMBEDDING METHOD, ◦ DENOTES ELMO EMBEDDING

METHOD, AND † DENOTES MULTIPLE AUXILIARY PREDICTION MODULES.

Model NER Chunking POS

LSTM-CRF [2] 90.94 94.62 95.75
LSTM-CNNs-CRF [5] 91.21 94.79 95.82
NCRF++ [42] 91.35 95.03 97.08
TagLM [43] 91.93 95.32 -
CSE [44] 93.09 96.04 97.42
ELMo [45] 92.22 95.39 96.43
BERT [10] 92.40 95.48 96.57

JMT∗ [25] - 95.34 97.24
Transfer Model∗ [16] 91.26 95.11 97.19
CVT∗† [48] 92.61 96.15 97.34
SC-LSTM◦ [28] 92.6 96.27 96.64

MTAA∗Basic 91.92 95.48 96.84
MTAA◦ELMo 92.60 96.67 97.11
MTAA 93.45 96.91 97.28

TABLE IV
COMPARISON OF LATEST METHODS FOR NER, CHUNKING, AND POS

TAGGING TASKS IN F1 SCORE ON ONTONOTES5.0. * DENOTES RANDOMLY
INITIALIZED EMBEDDING METHOD, ◦ DENOTES ELMO EMBEDDING

METHOD AND † DENOTES MULTIPLE AUXILIARY PREDICTION MODULES.

Model NER Chunking POS

CSE [44] 89.71 87.93 96.72
ELMo [45] 86.72 86.85 96.13
BERT [10] 87.95 87.77 96.29

CVT∗† [48] 88.81 87.96 96.32
SC-LSTM◦ [28] 87.66 88.02 96.12

MTAA∗Basic 88.26 87.26 95.97
MTAA◦ELMo 88.94 88.13 96.25
MTAA 89.83 88.44 96.38

TABLE V
COMPARISON OF LATEST METHODS FOR NER IN F1 SCORE ON

ONTONOTES5.0 (CHINESE).

Model NER

Lattice [47] 75.72
Joint-Yang [46] 76.34

MTAA 76.86

From those tables, we can first find that MTAA achieves
distinct improvements over all comparison methods in the
NER and Chunking tasks, and obtains competitive results in
POS tagging task. We further observe that the results obtained
by all methods on the OntoNotes 5.0 (English) data set are
slightly lower results than those on CoNLL2003. The reason
might be that OntoNotes5.0 is a more complex corpus and
requires more sequential features. To analyze the experimental

results, the subsequent content is arranged according to each
task.

Although the NER task is one of the most challenging
tasks in sequence labeling problem, MTAA outperforms
all compared single-task models on both data sets, which
indicates the effectiveness of exploiting shared knowledge
among tasks. For example, MTAA surpasses ELMo [45]
by 1.23%, BERT [10] by 1.05%, CSE [44] by 0.36% on
the CoNLL2003, and also yields 3.11%, 1.88% and 0.12%
improvements on the OntoNotes5.0. All of the three methods
train each task separately and leverage contextual embeddings.
For example, CSE [44] generates the contextual string embed-
dings by training character-level language model. The main
limitation of these methods is the time cost of training the
language model. Our proposed MTAA can achieve significant
improvements and flexibly utilize pre-trained models. There-
fore, this demonstrates the effectiveness of the knowledge
transfer and multi-representation fusion attention mechanism
designed in our model. In addition, compared with the multi-
task models, MTAA is still significantly superior to others.
Although CVT [48] (i.e., the closest competitor) contains
multiple auxiliary prediction modules, MTAA still surpasses it
by 0.84% on CoNLL2003 and 1.02% on OntoNotes. Similarly,
the MTAAELMo also surpasses SC-LSTM [28] in NER task
on both data sets. It should be noted that the structures of
CVT and SC-LSTM are similar to MTAA, but neither of
them considers eliminating task-specific noise. These results
once again support that MTAA is more effective than others
in purely extracting shared knowledge. Furthermore, we find
from Table V that our MTAA outperforms other approaches
tested in the Chinese NER task. These results support that our
MTAA can perform well in other languages.

For the Chunking task, most advanced methods obtain
F1 scores higher than 95% on CoNLL2003 data set. These
results indicate that Chunking task is less challenging than
NER task. We can find that MTAAELMo outperforms its
best competitor (i.e., SC-LSTM) in F1 score by 0.40% on
CoNLL2003 and 0.11% on OntoNotes. In addition, MTAA
surpasses all the comparison methods and achieves 96.91%
and 88.84% in F1 score on the two data sets. These significant
improvements show that shared knowledge transferred from
other tasks is most helpful to the Chunking task. One finding
worth considering is that most of comparison methods cannot
perform well on the Chunking task of OntoNotes5.0. The main
reason is that the labels of Chunking task on OntoNotes5.0 are
extremely complex, which include tree structure information.

Focus on the results on the POS tagging task, we can
observe that the accuracy of the most state-of-the-art methods
are close to 97%. It is very common for these POS tagging
methods to achieve such results on certain specific data set
(e.g., Penn Treebank). However, the proposed MTAA still
significantly outperforms most methods on both data sets. For
example, MTAA defeats CTV [48], the closest competitor
in the multi-task sequence labeling methods, with 0.06% im-
provement on the OntoNotes data set. Meanwhile, our model
achieves the second-best performance compared with all
single-task sequence labeling methods on the OntoNotes5.0,
of which only CSE [44] outperforms MTAA. We consider
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(a) NER (b) Chunking (c) POS

Fig. 2. The effectiveness of the adversarial training strategy. Base Model denotes the single-task version of MTAA. MTAA(no TD) denotes MTAA without
task discriminator. MTAA(E-ADV) denotes that the adversarial training module is placed after the embedding layer.

TABLE VI
EFFECT OF ADVERSARIAL TRAINING STRATEGY (F1 SCORE).

Model NER Chunking POS

Base Model 91.72 95.43 96.45
MTAA(no TD) 92.18 95.84 96.67
MTAA(E-ADV) 92.43 95.11 96.51

MTAA 93.45 96.91 97.28

that the CSE [44] achieves such great success by leveraging
character-level language model. We will investigate whether
MTAA can leverage the contextual string embeddings in
future work.

Overall, our proposed MTAA achieves state-of-the-art per-
formances on all three sequence labeling tasks. It should
be noted that these results are obtained without any hand-
crafted features such as capitalization, prefixes, and suffixes.
In addition, the performance of MTAA on OntoNotes5.0 is
better than that on CoNLL2003. In terms of the length of
sentences and the number of complex sentences, OntoNotes5.0
is more complicated than CoNLL2003. Therefore, these results
indicate that our model has more advantages in dealing with
complicated data set.

E. Ablation Study

In this section, we conduct a series of ablation experiments
on the CoNLL2003 to quantify the contributions of the pro-
posed modules in MTAA.

1) Effect of Adversarial Training Strategy. In our model,
we exploit an adversarial training strategy to extract task-
shared knowledge while reducing the task-specific noise. To
investigate the effect of shared knowledge extraction, we
compare the performance of different extraction methods in
this set of experiments, and the results are shown in Fig-
ure 2 and Table VI. Especially, the base model in Table VI
denotes the single-task version of our MTAA, which removes
the modules related to knowledge transfer. The MTAA(no
TD) denotes MTAA without task discriminator, that is, task-
specific noise is not filtered during the knowledge transfer
process. MTAA(E-ADV) denotes that the adversarial training
module in MTAA is placed after the embedding layer, which

is designed to explore the effect of the adversarial training
strategy in different locations.

From the Figure 2, we can first observe that shared knowl-
edge has a great impact on the performance of all tasks. In
almost all tasks, the other three transfer methods are gener-
ally superior to the base model. Moreover, MTAA(E-ADV)
achieves better performance than MTAA(no TD) and MTAA
in the first five epochs of training. However, the MTAA(no
TD) can surpass MTAA(E-ADV) on both Chunking and POS
tagging tasks at the end of training. The results turn out
that MTAA(E-ADV) might suffer from the task discriminator
collapse problem, while the task-shared encoder can easily
mislead the task discriminator. The main reason we consider
is that these three tasks belong to sequence labeling tasks, and
their inputs come from the same sentence. Therefore, it is hard
to present the respective characteristics of different tasks only
after the word embedding.

As shown in Table VI, compared with the base model,
MTAA(no TD) achieves 0.46%, 0.41% and 0.22% improve-
ments on NER, Chunking and POS tagging tasks respectively.
Further investigation finds that MTAA improves MTAA(no
TD) by 0.61-1.27% on all tasks. The results indicate that with
the task discriminator is removed, the task-shared encoder
might bring task-specific noise into the model, resulting in
a negative transfer effect. Compare with MTAA(E-ADV), our
proposed MTAA significantly achieves 0.77-1.80% improve-
ments on all tasks. Thus, the adversarial training strategy can
effectively improve the performance of the model for multi-
task learning, and the location of the adversarial training is
also important.

2) Effect of Fusion Methods. In our model, we present
the multi-representation fusion attention mechanism to dynam-
ically merge individual and shared representations. To study
the effect of our proposed fusion method, we use other fusion
methods to replace it in this set of experiments, and the results
are shown in Figure 3 and Table VII. Inspired by exploiting
the feature embedding methods, we concatenate and average
the obtained representations, respectively. Furthermore, we
design a two-step attention mechanism in the experiments.
The two-step attention mechanism means that the individual
representation can be merged with one of the shared repre-
sentations into the middle representation by the traditional
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(a) NER (b) Chunking (c) POS

Fig. 3. The effectiveness of multi-representation fusion attention mechanism. Average denotes that we take the average of the individual and shared
representations instead of multi-representation fusion attention mechanism. Concatenation denotes that we concatenated the individual and shared representations
instead of multi-representation fusion attention mechanism. Two-step Attention means another proposed two-step attention mechanism.

TABLE VII
EFFECT OF FUSION METHODS (F1 SCORE).

Model NER Chunking POS

Average 92.78 94.11 95.98
Concatenation 93.01 95.33 96.67
Two-Step Attention Fusion 92.97 95.51 96.42

MTAA 93.45 96.91 97.28

attention mechanism each time. After that, we can get multiple
middle representations. Then, we merge them into the fusion
representation by the traditional attention mechanism.

From Figure 3, one could observe that both concatenation
and average methods are generally superior to the attention-
based methods in the first 10 epochs on all tasks. The main
reason is that the static fusion method (i.e., concatenate and
average methods) without additional parameters obtain better
training efficiency. Although the two-step attention mechanism
contains the most parameters in these comparison methods, our
multi-representation fusion attention mechanism still achieves
better performance than it. So the essential reason is that
the two-step calculation is too complicated which leads to
ineffective fusion. From the results in Table VII, we can
see that the concatenation method is better than the average
method on all tasks, and fusion attention mechanism we
proposed is more effective than both of them. The results
demonstrate that static fusion methods, which simply merge
the multiple representations independently, cannot perform
well in the multi-task learning model. The results again
support the effectiveness of our proposed multi-representation
fusion method in multi-task learning.

F. Analysis of Embedding Methods

In our MTAA, the embedding layer consists of a full
pre-trained BERT model and a dense layer. To explore the
effectiveness of the MTAA with different embedding methods,
we examine the MTAA and base model (same as defined in
Ablation Study) with different embedding methods, including
basic embedding (i.e., randomly initialized word embeddings

TABLE VIII
COMPARISON OF DIFFERENT EMBEDDING METHODS USED IN BASE

MODEL AND MTAA (F1 SCORE).

Model Embedding NER Chunking POS

Base Model
Basic 90.18 93.17 95.68
ELMo 91.36 95.27 96.12
BERT 91.72 95.43 96.45

MTAA
Basic 91.92 95.48 96.84
ELMo 92.60 96.67 97.11
BERT 93.45 96.91 97.28

and character embeddings), pre-trained ELMo and pre-trained
BERT. This set of experiments is performed on CoNLL2003,
and the results are shown in Table VIII. From the results,
we observe that the models with pre-trained ELMo always
outperform the models with only basic embedding. For exam-
ple, the base model with ELMo improves basic embedding by
0.54-2.10% on all tasks, and the performance improvements
on MTAA with EMLo are also significant. Moreover, MTAA
with EMLo surpasses the base model with BERT by 0.66-
1.24% on all tasks.

In addition, the results in Table VIII show that the BERT
achieves the best performance of both base model and MTAA.
To be specific, for the base model, the BERT outperforms
the basic embedding by 0.77-2.26% on all tasks. And it also
achieves significant improvements for MTAA, such as MTAA
with BERT surpasses MTAA with basic embedding by 0.44-
1.53% on all tasks. From Table VIII, one could also observe
that with the help of embedding methods (i.e, ELMo and
BERT), both the base model and MTAA can be significantly
improved. This observation supports that the knowledge from
the external corpus can improve the performance of the model
on the target task. Moreover, the improvement of using the
pre-trained embedding methods on MTAA is slightly less than
that of the base model, because the MTAA can transfer shared
knowledge by itself.

G. Case Study
To further illustrate the effectiveness of our proposed model

in purely extracting shared knowledge, we take a sentence
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TABLE IX
AN EXAMPLE OF PREDICTED RESULTS IN CONLL2003 TEST DATA SET. THE P, C, AND N DENOTE THE POS TAGGING, CHUNKING, AND NER TASKS,

RESPECTIVELY. THE INCORRECT LABELS ARE HIGHLIGHTED IN RED.

Model Task West Indies batsman Brian Lara suffered another blow to his Australian tour

Golden
P NNP NNP NN NNP NNP VBD DT NN TO PRP JJ NN
C B-NP I-NP I-NP I-NP I-NP B-VP B-NP I-NP B-PP B-NP I-NP I-NP
N B-LOC I-LOC O B-PER I-PER O O O O O B-MISC O

Base Model
P NNP NNP NNP NNP NNP VBD DT NNP TO PRP JJ NN
C B-NP I-NP I-NP I-NP I-NP B-VP B-NP I-NP B-PP B-NP I-NP I-NP
N B-LOC I-LOC O B-PER I-PER O O O O B-MISC I-MISC I-MISC

MTAA(no TD)
P NNP NNP NNP NNP NNP VBD DT NN TO PRP JJ NN
C B-NP I-NP I-NP B-NP I-NP B-VP B-NP I-NP B-PP B-NP I-NP I-NP
N B-LOC I-LOC I-LOC B-PER I-PER O O O O O B-MISC O

MTAA
P NNP NNP NN NNP NNP VBD DT NN TO PRP JJ NN
C B-NP I-NP I-NP I-NP I-NP B-VP B-NP I-NP B-PP B-NP I-NP I-NP
N B-LOC I-LOC O B-PER I-PER O O O O O B-MISC O

in CoNLL2003 test set as an example, as shown in Table
IX. From this table, we can see that ‘West Indies batsman
Brian Lara’ contains a location entity and a person entity, and
these five words form an NP-phrase. For these five words,
the MTAA(no TD) fails on all three labeling tasks and the
base model fails on the POS task. These results demonstrate
that the full knowledge transfer manner cannot achieve good
performance due to the task-specific noise. This example again
supports the effectiveness of adversarial training in filtering
task-specific noise.

More importantly, this sentence is also a positive example
of presenting the shared knowledge among tasks. Such as, the
labeling results of ’West Indies’ reflect the consistency among
the nouns of the POS tagging task, the noun phrase of the
Chunking task, and the person entity of the NER task. More-
over, one could observe that the targets of the POS tagging and
Chunking tasks are consistent in some respects from ‘suffered
another blow’ (e.g., the tag ‘VBD’ and ‘B-VP’). These results
indicate that the relationship between tasks should be equal
in order to transfer knowledge in both directions. Thus, our
symmetric MTAA is capable of extracting shared knowledge
and predict the correct labels for all tasks.

V. RELATED WORK

Multi-task Learning is a popular approach in different NLP
field [14], [15]. For the sequence labeling task, Collobert
and Weston (2008) [49] firstly proposed a unified sequence
labeling architecture, which applied to various tasks such
as SRL, NER, POS tagging, and chunking simultaneously.
Søgaard and Goldberg (2016) [17] presented a multi-task
learning architecture with deep bi-directional RNNs, where
different tasks supervision can happen at different layers.
They used the POS tagging as the source task, while the
Chunking and CCG supertagging are the target task. They
also showed that POS benefits Chunking and CCG. The multi-
task relationship, however, they refer to in their work is the
source-target relationship. Besides, their method is unscalable
and cannot accomplish more than two sequence labeling
tasks simultaneously. Moreover, Hashimoto et al. (2017) [25]
presented an end-to-end model that can be trained for POS
tagging, chunking, dependency parsing, semantic relatedness,

and textual entailment. They exploited the linguistic hierarchy
structure that treats different tasks at different layers. The main
limitation of the linguistic hierarchy structure-based methods
is that we have to sort the tasks, while the order of tasks may
impact the performance of all tasks. Based on the symmetric
structure, Yang et al. (2017) [16] attempted transfer learning
for low-resource neural sequence taggers. They proposed three
transfer models for cross-domain, cross-application, and cross-
lingual transfer for the sequence labeling tasks. Clark et al.
2018 [48] proposed a self-training algorithm, called Cross-
View Training (CVT), for the neural sequence model, which
leverages both labeled and unlabeled data to improve the
representations of sentence encoder. CVT also can easily be
combined with multi-task learning. Lu et al. [28] proposed a
new LSTM cell, called Shared-Cell LSTM (SC-LSTM), which
can learn task-shared and specific information simultaneously.
As a result, this new LSTM improved the performance of
multi-task sequence labeling. All three methods use a similar
symmetric structure to our proposed MTAA. However, none of
them consider eliminating task-specific noise from the model.

Adversarial networks also have drawn wide attention in
the NLP field [21], [22], [50]. For the Chinese NER, Yang
et al. (2018) [20] proposed a method for crowd annotation
learning, which can exploit the noisy sequence labels from
multiple annotators. Moreover, the authors created two data
sets for Chinese NER tasks in the dialog and e-commerce
domains. The experimental results show that the proposed
approach can surpass strong baseline systems. Moreover, Cao
et al. (2018) [19] proposed an adversarial transfer learn-
ing framework for the Chinese NER task, which can make
full use of task-shared boundaries information and prevent
the task-specific features of CWS. Experimental results on
two different widely used data sets show that this model
significantly and consistently outperforms other state-of-the-
art methods. However, as we illustrate in Section II, their
methods might suffer from the discriminator collapse problem.
Both methods exploited the adversarial training to transfer
knowledge from the external corpus, but they only completed
one task (e.g., the Chinese NER) limited by the structure.
For other NLP tasks, Chenet al. (2017) [29] proposed adver-
sarial multi-criteria learning for CWS by integrating shared
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knowledge from multiple heterogeneous segmentation criteria.
Compared to single-criterion learning, their model obtained
significant improvements on eight corpora with heterogeneous
segmentation criteria. Yasunaga et al. (2018) [51] proposed a
neural POS tagging model that aims to achieve robustness to
input perturbations. Multilingual experiments showed that the
proposed model can achieve significant improvements in all
tested languages, especially in low resource ones. Chen et al.
(2018) [52] proposed an adversarial deep averaging network
to tackle the sentiment classification problem in low-resource
languages without adequate annotated data.

Recently, attention mechanism has achieved great success
in natural language tasks [53], [54], [55]. For machine trans-
lation, attention mechanisms establish dependencies regardless
of their distance in the input or output sequence [56]. To solve
the problem of police killing recognition, Nguyen and Nguyen
(2018) [57] introduced supervised attention mechanisms based
on semantical word lists and dependency trees to weight the
important contextual words. Lin et al. (2017) [58] presented a
multi-lingual neural relation extraction framework employing
mono-lingual attention and cross-lingual attention. They ex-
ploited the two kinds of attention mechanisms to capture the
pattern consistency and complementarity among languages.

VI. CONCLUSIONS

In this paper, we propose a multi-task learning method
MTAA for sequence labeling tasks. MTAA has a symmetric
structure that can treat all tasks equally. Our model ex-
ploits the adversarial training strategy to purely extract shared
knowledge among tasks. Furthermore, the multi-representation
fusion attention mechanism generates the fusion representa-
tions from shared and individual representations appropriately.
Experiments on two well-known data sets show that MTAA
achieves significant improvements over the previous state-of-
the-art models. For future work, we will further model multi-
task sequence labeling without multi-way parallel data, as well
as generalize our MTAA to NLP tasks other than the sequence
labeling tasks.
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